Magic is Relevant

Inderpal Singh Mumick*
Stanford University

Hamid Pirahesh
IBM Almaden Research Center

Sheldon J. Finkelstein†
IBM Almaden Research Center

Raghu Ramakrishnan‡
University of Wisconsin at Madison

Any sufficiently advanced technology is indistinguishable from magic
— Arthur C. Clarke, in "Profiles of the Future"

Abstract

We define the magic-sets transformation for traditional relational systems (with duplicates, aggregation and grouping), as well as for relational systems extended with recursion. We compare the magic-sets rewriting to traditional optimization techniques for nonrecursive queries, and use performance experiments to argue that the magic-sets transformation is often a better optimization technique.

1 Introduction

"Magic-sets" is the name of a query transformation algorithm ([BMSU86]) (and now a class of algorithms — Generalized Magic-sets of [BR87], Magic Templates of [Ram88], Magic Conditions of [MFPR90]) for processing recursive queries written in Datalog. Previously, these algorithms had not been deployed in standard relational database systems, and their value for such systems had not been assessed.

*Part of this work was done at the IBM Almaden Research Center. Work at Stanford was supported by an NSF grant IRI-87-22686, an Air Force grant AFOSR-88-0266, and a grant of IBM Corporation.
†Author's current affiliation: Tandem Computers.
‡Part of this work was done while the author was visiting IBM Almaden Research Center. Work at Wisconsin was supported by an IBM Faculty Development Award and an NSF grant IRI-88-04319.

Relational database systems support a number of features beyond those in Datalog, including duplicates (which lead to multisets), aggregation and grouping. We extended the magic-sets approach (and the Datalog language) to handle these features ([MPRSO]), and also showed that magic-sets can be extended to propagate conditions other than equality ([MFPR90]).

This paper synthesizes, extends, and applies those results, our goal is to demonstrate that magic-sets is a robust technique which can profitably be incorporated in practical relational systems not just for processing recursive queries (e.g., bill-of-materials) but also for nonrecursive queries. The technique is particularly valuable for complex queries such as decision-support queries.

The paper is organized as follows. We present a brief subsection describing SBSQL, the SQL language of Starburst that supports recursion, and give a realistic example of a non-linear query. Section 2 motivates the practicality of the magic-sets technique by describing its relationship to traditional transformations (such as predicate pushdown) for nonrecursive complex SQL queries. Section 3 defines the magic-sets transformation and some related concepts, as published elsewhere. Section 4 describes our extension of the magic-sets transformation for relational database systems, resolving complications arising when our previous results [MFPR90, MPR90] are combined and applied to SBSQL. We show that recursions introduced by the magic-sets transformation of nonrecursive queries can be avoided, and that combining the adornment phase with the magic-sets transformation allows us to propagate arbitrary conditions using a simple adornment pattern. An overview of the implementation of magic-sets in the Starburst extensible relational database prototype at IBM Almaden Research Center ([IIFLP89]) is presented in Section 5. Section 6 gives DB2 performance measurements demonstrating that magic-sets can improve the performance of complex nonrecursive SQL queries over traditional techniques such as correlation and decorrelation. Section 7 presents conclusions.
11 Starburst SQL (SBSQL)

The SQL language in Starburst (SBSQL) has been extended to include recursion, user-defined functions, and abstract data types. SBSQL supports a number of operations on tables, including SELECT, GROUPBY, and UNION. The SELECT operation performs a join and selection on the input tables and outputs a set of expressions on columns of qualified tuples. A sophisticated user of Starburst (the Database Customizer) may define new operations (e.g., outer join) on tables, so the query-rewrite phase of Starburst needs to be adaptable to language extensions.

Definition 1.1 Table Expressions A texp (table expression) in SBSQL is an expression defining a named derived table that can be used anywhere in the query in place of a base table. A texp includes a head and a body. The head of a texp specifies its output table (name, attribute names). The body of a texp is an SBSQL query specifying how the output table is computed.

As an example, consider the following query that determines the employee number and salary of senior programmers along with the average salary and head count of their departments.

Example 1.1 (Table Expression)

(Q) SELECT Eno, Sal, Avgsal, Empcount FROM emp, dlnfo(Dno, Avgsal, Empcount) AS (SELECT Dno, AVG(Sal), COUNT(*) FROM emp GROUPBY Dno) WHERE Job = "SI Programmer" AND emp Dno = dlnfo Dno

In this paper, we will sometimes refer to an SBSQL query as a program.

2 Relationship of Magic-sets to Traditional Optimizations

This section gives an informal description of magic-sets and its relationship to more traditional transformation techniques, and compares our work with previous results. Section 3 defines the magic-sets transformation formally.

2.1 Predicate Pushdown

Practical relational database systems push selection predicates as far down as possible in the execution tree. Data is filtered so that irrelevant rows are not propagated; in some cases, predicates are applied implicitly via the access path chosen to retrieve data. Consider the following SQL query with emp(Eno, Ename, Sal, Bonus, Job, Dno, EkindsN) and dept(Dno, Mgrno, Location) as the base tables:

(Q) SELECT Ename, Mgrno FROM emp, dept WHERE Job = "SI Programmer" AND Sal + Bonus > 50000 AND emp Dno = dept Dno AND Location = "San Jose" AND P(emp,dept)

P is some complex subquery. A system might use an index on Job to access only senior programmers, immediately apply the predicate on Sal + Bonus, access dept using an index on its Dno column, immediately apply the predicate on Location, and finally evaluate the
subquery \(P \). Using an index is often cost-effective, even though it can be thought of as introducing an extra join (with the index). Indexes access can eliminate retrieval of many irrelevant rows (and hence, perhaps, many irrelevant data pages). Once we have an \(emp \) row, \(emp \) \(Dno \) can be passed down, so that the \(Dno \) predicate can be used for accessing (or filtering) \(dept \).

The predicate on \(Sal + Bonus \) could have been applied after \(dept \) was retrieved, but instead “predicate pushdown” moved it next to the data access. Since evaluation of such predicates is expensive, predicate pushdown (eliminating irrelevant rows as soon as possible), is typically a very good strategy.

The semi-join operator [BC81, RBF+80] takes this idea a step further. If an employee’s department is not in San Jose, that employee is just as irrelevant (for the above query) as if she were a Junior Programmer. By computing \(SJDno \), the \(Dno \)'s of the departments in San Jose, a system can follow a modification of the above execution plan in which employees are filtered (based on \(emp \) \(Dno \) in \(SJDno \)) before the join with the \(dept \) table. As with indexes, an extra operation is introduced (the computation and join with \(SJDno \)). Applying this operation means that the \(dept \) table must be accessed twice, first to compute \(SJDno \), then to access matching departments.

In the original plan above, \(emp \) was accessed first, then the value of \(Dno \) was passed to \(dept \), so that relevant departments were accessed. The semi-join predicate restricting employees to those with \(Dno \) in \(SJDno \) was passed “sideways” in the opposite direction, from the department table. Using information passed sideways is the “magic sets” approach — systematically introducing predicates based on information passed sideways, so that these predicates can be used to filter out irrelevant data as soon as possible.

Unlike the standard predicate pushdown transformation, magic may be applied in many different ways for a particular query, these correspond to the “sips” (sideways information passing strategies) chosen. Sips can be used flexibly, for each join order (sips order), we can pick any set of tables to generate bindings, and pick any subset of the bindings and push them down. This produces magic predicates, which are bindings on certain columns (similar to the semi-join predicate for \(SJDno \) above). The names used for magic tables show how they were created — these names have superscripts indicating restrictions on attributes of the original query’s tables. The superscripts are called “adornments.”

2.2 Correlation and Decorrelation

Several authors have studied SQL subqueries ([ISO89, ABC+79]) and described transformations for migrating predicates across them [Kim82, GW87, Day87]. Correlation, like magic, “pushes predicates down” into subqueries. Its inverse, decorrelation, “pulls predicates up” from subqueries. One major difference between magic and these other techniques is that magic applies uniformly to hierarchical (tree-structured) and recursive queries (as well as queries with common subexpressions), these other techniques have been applied only to hierarchical queries. Performance comparisons of these techniques appear in Section 6.

EXAMPLE 2.1 (Correlation, Decorrelation and Magic)

(C) \[
\text{SELECT Ename FROM emp} \\
\text{WHERE Job = "Sr Programmer" AND} \\
\text{Sal > (SELECT AVG(Sal) FROM emp e2) WHERE e2 Dno = e1 Dno)}
\]

Query (C) selects senior programmers who make more than the average salaries in their departments. As written, it involves correlation for each employee who is a senior programmer, the average salary in her department is calculated, and the employee is selected if her salary is more. No irrelevant information is computed, but the average salary for a department might be calculated many times (if several employees were in the same department). In addition, access to \(e1 \) and \(e2 \) must be done in a specific order (\(e1 \), then \(e2 \)). Finally, processing for \(e2 \) is row-at-a-time rather than set-oriented, and set-orientation tends to be a major performance advantage of the relational model. Thus correlation diminishes the non-procedural and set-oriented advantages of the relational model, and may also perform redundant computations.

Query (C) can be transformed into the decorrelated query (which uses a temporary table, \(dep-avgsal(Dno, Sal) \), defined within the query)

(D1) \[
\text{SELECT Ename FROM emp, dep-avgsal} \\
\text{WHERE Job = "Sr Programmer" AND Sal > ASal AND emp Dno = dep-avgsal Dno}
\]

(D2) \[
\text{dep-avgsal(Dno, Sal) AS} \\
\text{(SELECT Dno, AVG(Sal) FROM emp GROUPBY Dno)}
\]

Unlike the correlated query, the decorrelated query is set-oriented (Average salaries are computed for all the departments in one operation, rather than computing the average for one department at a time as an employee in the department is selected.) It is also non-procedural (The two scans of employee can be switched around.) An execution plan might access employees by \(Dno \), calculate the average salary for that \(Dno \), forming a tuple of \(dep-avgsal \), and then find all senior programmers in that \(Dno \) with a higher salary. But decorrelation also has a substantial disadvantage: average salary is determined for all departments, whether or not they have senior programmers. If there are many departments and only a few have senior programmers, the cost of the irrelevant computation will be substantial.

The magic-sets approach combines the advantages of correlation and decorrelation though at a cost. After transformation the magic query \(S \) is

(S1) \[
\text{SELECT Ename FROM s-mag, mag-avgsal} \\
\text{WHERE Sal > ASal AND s-mag Dno = mag-avgsal Dno}
\]

1 Correlation can also exist in recursive queries, but that is beyond the scope of this paper [PF89].

2 Correlation might be implemented so that departmental salaries are stored in a temporary table. This has its own costs.

3 In this paper a program consisting of statements \(X_1 \) to \(X_n \) is referred to as program \(X \).
(S2) mag_avgsal(Dno, Asal) AS
(SELECT Dno, AVG(Sal) FROM mag, emp
WHERE mag Dno = emp Dno GROUP BY Dno)

(S3) mag(Dno) AS
(SELECT DISTINCT Dno FROM s_mag)

(S4) s_mag(Ename, Dno, Sal) AS
(SELECT Ename, Dno, Sal FROM emp
WHERE Job = "Sr Programmer")

One possible execution plan for S selects employees who are senior programmers (s_mag), determines which departments have at least one of these employees in them (mag), computes the average salary only for those departments (mag_avgsal), and then selects each senior programmer (s_mag) who makes more than her departmental average. The accesses can be ordered in other ways, just as they could be for the decorated query, and the operations are set-oriented. Moreover, no irrelevant data is touched, since the average is computed only for departments that have senior programmers. However, magic comes at the cost of computing extra tables, s_mag and mag.

The magic query S is similar to the semi-join example given in Section 2.1 Information about relevant bindings (departments that have senior programmers) is passed "sideways" from emp to mag_avgsal.

2.3 Previous Work

Kim [Kim82] originally studied the question of when quantified subqueries could be replaced by joins (or anti-joins) Ganski and Wong [GW87] and Dayal [Day87] did additional work on both eliminating nested subqueries and making correlated subqueries more efficient. These papers recognize that correlated subqueries can be very inefficient because they are not set-oriented. They eliminate correlation by introducing additional relational operators, including outer join [GW87] and generalized aggregation [Day87]. Their transformations can be applied to SQL queries written in a specific form, where the user either pushes down join predicates from the query to the subquery or writes a predicate referring to tables in both the subquery and the query. They use these predicates, which we think of as sideways predicates, to generate bindings in the query.

In contrast, our Extended Magic Sets (EMS) technique takes queries without user-specified correlation and determines which sideways predicates should be pushed down. This is an advance, since users might miss some opportunities for predicate pushdown, and some cannot even be specified syntactically. However, if users specify correlated predicates, it is desirable to make them set-oriented. For this, we rely on techniques similar to the ones presented in [GW87] and [Day87]. Hence we view Ganski's and Dayal's work as complementary to our work. Ganski's paper illustrates the complexity of query-rewrite, since it emends some previous transformations. This complexity supports our unified structured approach, in which we systematically transform an algebraically general class (that includes recursion) of queries.

3 Definitions

Magic-sets Transformation The Magic Sets algorithm rewrites a query so that the fixpoint evaluation of the transformed query generates no irrelevant tuples. The idea is to compute a set of auxiliary tables that contain the bindings used to restrict a table. The table expressions in the query are then modified by joining the auxiliary tables that act as filters and prevent the generation of irrelevant tuples. As a first step, however, we produce an adorned query in which tables are adorned with an annotation that indicates which arguments are bound to constants, which are restricted by conditions, and which are free, in the table expression using the table. For each table, we have an adorned version that corresponds to all uses of that table with a binding pattern that is described by the adornment, different adorned versions are essentially treated as different tables (and possibly solved differently). For example, p^b and p^f are treated as (names of) distinct tables. An adornment for an n-ary table is defined to be a string of b's, c's and f's. Argument positions that are treated as free (have no predicate on them) are designated as f, and positions that are bound to a finite set of given values (by equality predicates) are designated as b. Argument positions that are restricted in the goal by some non-equality predicate (condition), are designated as c.

The magic-sets transformations of [BMSU86, BR87] propagate bindings (equality predicates) in Datalog, using b and f adornments. Conditions are ignored. [MPRS90] extends the magic-sets transformation to propagate bindings in programs with duplicates and aggregation. The extension to conditions ([MPRS90]) needs to be adapted to work in presence of duplicates, and we present the idea in Section 4.1. We ignore c adornments and conditions in the following definition.

The Magic-Sets algorithm can be understood as a two-step transformation in which we first obtain an adorned query Pad and then apply the following transformation:

We construct a new query P^m4 Initially, P^m4 is empty.

1. Create a new DISTINCT table m.p for each table p in Pad. The arity is the number of bound arguments of p.

2. For each table expression in Pad, add a modified version to P^m4. If table expression t has head, say, p(t) (t is shorthand for all the attributes of
p), the modified version is obtained by joining the table \(m.p(t^b)\) into the body \((m.p\) denotes the magic table of \(p\), and \(t^b\) denotes the arguments of \(p\) that are bound.)

3. For each table expression \(r\) in \(P\) with head, say, \(p(t)\), and for each table \(q(t_q)\) referenced in its body, add a magic table expression \(t^b\). The head is \(m.q(t^b)\). The body contains all tables that precede \(q\) in the views (defined below) associated with \(r\), and the magic table \(m.p(t^b)\).

4. Create a seed tuple \(m.q(\bar{c})\) from the equality predicates in the outermost query block, where \(\bar{c}\) is the set of constants equated to the bound arguments of \(q\).

Note that there is a magic table associated with each table in \(P\). If several table expressions with the same head are generated, they are replaced with a single table expression in which the body is the union of the bodies.

Intuitively, magic-sets transformation involves adding magic tables to the FROM clause and equipping predicates to the WHERE clause of each SQL statement.

EXAMPLE 3.1 (Magic-sets Transformation) Consider the query \(D\) of Example 2.1. We need to evaluate the average salary of a department in the view dep-avgsal if, and only if, the department has a senior programmer, as otherwise the average salary is not relevant. Magic-sets achieves this optimization by defining a magic table \((M3)\), and rewriting \(D1\) and \(D2\) as \(M1\) and \(M2\).

\[
\text{(M1)} \quad \text{SELECT Ename FROM emp WHERE Job = "Sr Programmer" AND Sal > Asal AND emp.Dno = dep-avgsal.Dno}
\]

\[
\text{(M2)} \quad \text{dep-avgsal.Dno, Asal) AS}
\]

\[
\text{(SELECT Dno, AVG(Sal) FROM m-dep-avgsal, emp WHERE m-dep-avgsal.Dno = emp.Dno GROUPBY Dno)}
\]

\[
\text{(M3)} \quad \text{m-dep-avgsal.Dno) AS}
\]

\[
\text{(SELECT DISTINCT Dno FROM emp WHERE Job = "Sr Programmer")}
\]

Supplementary Magic-sets In the magic query \(M\) of Example 3.1, the predicate Job = "Sr Programmer" is repeated in statements \(M1\) and \(M3\). The program \(S\) in Example 2.1 stores the result of the selection in \(s_mag\), and uses it as a common subexpression when evaluating \(S1\) and \(S3\). \(s_mag\) is called the supplementary magic-set. Program \(D\) is transformed into program \(S\) using the supplementary magic-sets transformation ([BR87]). We use supplementary magic-sets in Section 6 because the performance advantage of using common subexpressions is important. For ease of exposition, we use magic-sets in other sections.

SIPS A Sideways Information Passing Strategy is a decision as to how to pass information sideways in the body of a table expression while evaluating the table expression. The information passed comes from the predicates in the table expression. [BR87, MFPR90] define SIPS formally.

A sips can be full, meaning that all eligible predicates are used as soon as possible, or partial. A full sips can be defined by an ordering on the tables in the FROM clause. We refer to this order as the sips order.

The magic-sets transformation passes information sideways between tables being joined, according to a given sips order. In this paper, we assume that tables are listed in the FROM clause in the sips order.

Dependency Graphs Dependency graphs are commonly used to detect recursions. In a table expression, the tables in the body (the FROM clause) are used to define the table in the head. If table \(q\) defines table \(r\) in some table expression, we denote this by \(q \rightarrow r\), which is called a dependency edge. We define \(\rightarrow\) to be the transitive closure of \(\rightarrow\). A query is recursive if its dependency graph has cycles, that is, if there exists a table \(q\) such that, \(q \rightarrow q\). All tables in a strongly connected component (scc) of the dependency graph are said to be mutually recursive.

4 The Extended Magic-sets Transformation

The magic-sets transformation defined in Section 3 is applicable to relational systems with duplicates and aggregation. The definition borrows results from [MPR90], where semantics of duplicates and aggregation in presence of recursion is defined, and the use of aggregation is limited to the classes of monotonic and magical stratified programs, which are closed under the magic-sets transformation.

The magic-sets transformation was long believed to be useful only for propagating bindings (equality predicates). Our recent paper, [MFPR90], addresses the extension of the technique to propagating conditions (non-equality predicates) in Datalog programs, using a ground magic-sets transformation (GMT). In Section 4.1 we extend GMT to work in the presence of duplicates.

Further, we discuss how the magic-sets technique may be useful in purely nonrecursive systems (Section 4.2), and we present a one-phase algorithm for adomining and magic transforming a query that lets us push arbitrary conditions using just the \(b, c, f\) adomiments (Section 4.3).

4.1 Pushing Conditions using Magic

The ground magic-sets transformation for propagation of conditions, as presented in [MFPR90], does not preserve duplicate semantics. We consider a simple example.

251
EXAMPLE 4.1 Consider the following program P. p_1 and p_2 are arbitrary built-in predicates (conditions), and u, v, s, t are EDB relations.

(P_1): $t(X, Z) \text{ AS } (\text{SELECT } x, z \text{ FROM } p_1(x) \text{ AND } tcr(x, Y) \text{ AND } u & z) \text{ UNION } (\text{SELECT } X, z \text{ FROM } p_2(x) \text{ AND } t(X, Y) \text{ AND } v(Y, Z))$.

(P_2): $t^{bf}(X, Z) \text{ AS } (\text{SELECT } X, z \text{ FROM } s(X, Y) \text{ AND } w(Y, Z))$.

Let $s = [(1, 2), (1, 2), (1, 2)], w = [(2, 3)], v = [(3, 4)],$ and $u = [(1, 2)]$. Let $p_1(1)$ and $p_2(1)$ be true. The duplicate semantics of P defines t to be the multiset $[(1, 4), (1, 4), (1, 4)]$. GMT transforms the definition P_2 into:

(M_2): $t^{bf}(X, Z) \text{ AS } (\text{SELECT } X, z \text{ FROM } m(X) \text{ AND } s(X, Y) \text{ AND } w(Y, Z))$.

(M_3): $m(X, Y) \text{ AS } (\text{SELECT } X, Y \text{ FROM } p_1(X) \text{ AND } s(X, Y)) \text{ UNION } (\text{SELECT } X, Z \text{ FROM } p_2(X) \text{ AND } s(X, Y))$.

P_1 is copied into M_1 to complete the magic program. The view m has six copies of the tuple $(1,2)$, consequently the view r has six copies of $(1,4)$. As a result programs P and M are not duplicate equivalent. Simply defining m to be a DISTINCT table does not help us, for then m will have one copy of $(1,2)$, and r will have one copy of $(1,4)$.

As an aside, if either r or t was a DISTINCT table, GMT would preserve the query semantics.

GMT constructs customized magic-sets (m), known as supplementary magic-sets, for each SELECT clause by combining the magic-sets $(p_1(X))$ with a table in the FROM clause. Preservation of duplicate semantics requires us to eliminate overlapping magic tuples (X values common to p_1 and p_2), while retaining duplicates in tables copied from FROM clause (s). Such an operation is not possible if the magic tables are never constructed, as is the case in GMT.

A straightforward solution is to construct the magic-sets explicitly, writing M_2 and M_3 as:

(E_2): $t^{bf}(X, Z) \text{ AS } (\text{SELECT } X, z \text{ FROM } m(X) \text{ AND } s(X, Y) \text{ AND } w(Y, Z))$.

(E_3): $m(X) \text{ AS } (\text{SELECT } X, Y \text{ FROM } p_1(X) \text{ AND } s(X, Y)) \text{ UNION } (\text{SELECT } X, Z \text{ FROM } p_2(X) \text{ AND } s(X, Y))$.

m is the magic-set. Some joins are repeated in the above construction, such as the join with s. In the Starburst implementation, we have a solution that lets us use the supplementary transformation; we omit the description due to lack of space.

4.2 Magic-sets Transformation for Nonrecursive Programs

It is well-known that the magic-sets transformation has the undesirable property of merging sets. Consequently a nonrecursive program can become recursive.

EXAMPLE 4.2 (Recursion due to Magic): In the program P,

(P_1): $A, B \text{ FROM } r(A, C), q(C, B) \text{ WHERE } A = 10$.

(P_2): $r(X, C) \text{ AS } (\text{SELECT } X, C \text{ FROM } q(A, D), t(D, C))$.

(P_3): $q(E, F) \text{ AS } (\text{SELECT } E, F \text{ FROM } m.q^{bf}(E), s(E, F))$.

q is used twice, once in (P_1), and once in (P_2), with a bf adornment at both places. q^{bf} gets bindings from $r^{bf}(P_1)$, and from $m.q^{bf}(P_2)$. Its magic-sets is thus a Union. The magic-query is

(M_1): $A, B \text{ FROM } r^{bf}(A, C), q^{bf}(C, B) \text{ WHERE } A = 10$.

(M_2): $r^{bf}(A, C) \text{ AS } (\text{SELECT } A, C \text{ FROM } m.q^{bf}(A), q^{bf}(A, D), t(D, C))$.

(M_3): $q^{bf}(E, F) \text{ AS } (\text{SELECT } E, F \text{ FROM } m.q^{bf}(E), s(E, F))$.

(M_4): $m.q^{bf}(10)$.

(M_5): $m.q^{bf}(A) \text{ AS } (\text{SELECT } C \text{ FROM } m.q^{bf}(A, C) \text{ WHERE } A = 10) \text{ UNION DISTINCT } (\text{SELECT } A \text{ FROM } m.q^{bf}(A))$.

Query (M) is recursive, as its dependency graph has the cycle $q^{bf}(M_2) \rightarrow r^{bf}(5a) \rightarrow m.q^{bf}(M_3)q^{bf}$.

Many existing DBMS's do not support recursion. Usability of the EMS in such systems will be severely limited if recursive queries are produced as a result of the magic-sets transformation.

Consider Example 4.2. Table q^{bf} is recursive, but the newly introduced recursion is through the magic table, $m.q^{bf}$ (as it must be for any recursion introduced by the magic transformation). $m.q^{bf}(10)$ is computed from $(5b)$, and leads to tuples in q^{bf} by (M_3). These generate tuples for r^{bf} through (M_2). Tuples in r^{bf} generate new tuples in $m.q^{bf}(5a)$ and thence in q^{bf}. But now, the new q^{bf} tuples cannot fire the body of (M_2) to generate new r^{bf} tuples. Thus the recursion does not "feed into itself", and terminates after one loop. The program can therefore be written nonrecursively.

We can avoid the introduction of recursion in the magic program by not recognizing common subexpressions. If we treat the two uses of q in program P as two different tables, q_1 and q_2, the magic-sets transformation will not introduce recursion, as the reader may verify by performing the magic-sets transformation on a program P' derived from P with q_1 and q_2 defined according to P_3.

We now make precise the intuition underlying the above example.

Proposition 4.1 Given a query P, let M be the query obtained by magic transformation of P according to a set of full sips. Then, (A) If P is a tree structured query does not have common subexpressions.
for t" will be evaluated on a tablet

formanng the common subexpressaons 0
generating that adornment

Function 3 Adornments specify when two uses of t
can share the same copy of t as a common subexpression

The bcf adornment pattern introduced in [MFPR90]
uses the c adornment for independent conditions only
A condition on an attribute X is said to be independent
if it can be expressed without reference to any free (f) attribute
Thus X > 10 is independent X > Y is independent if Y is bound, otherwise it is dependent
The adornment algorithm and the following GMT
of [MFPR90] work on the assumption that only independent conditions are pushed down, and that no conditions are deduced from the given ones [MFPR90] also suggests that with the two-phase algorithm, it is not possible to capture and push down dependent and more general types of conditions using the bcf adornment pattern. Stronger adornment patterns are needed to push down such conditions

In our one-phase algorithm, we generate magic-sets
for a table t as we generate its adornments, before adornng the bodies of the table expression defining t. Later,

query, M is a dag⁰, and (B) if P is a dag, M will have
bounded recursion that can be avoided altogether by not forming the common subexpressions □

4 3 Simple-bcf Adornments

The magic-sets transformations of [BMSU86, BR87,
MFPR90] assume that an adorned program is available
as input. The transformation thus requires two phases. The program is adorned in the first phase, and magic transformed in the second phase. In this subsection, we present a one phase algorithm that does adornments and magic transformation together, and show how it can help in reducing the complexity of adornments.

We view adornments as providing three functions

Function 1 The adornment α on a table t is an abstraction for the restriction on the table t at the point where it is used. This abstraction, α, and not the actual restriction, is used to decide how the table expressions for tα will be evaluated.

Function 2 tα is evaluated in an identical fashion for all restrictions that are abstracted by the adornment α (same sips, sips orders, join orders and adornments for tables referenced in t’s table expressions). Thus if the abstraction is not a good one, tα will be solved less than optimally for some of the restrictions. An adornment should be faithful ([MFPR90]) in that it should allow an optimal evaluation to be chosen for all restrictions (within the class of restrictions the adornment pattern is trying to capture) generating that adornment.

Function 3 Adornments specify when two uses of t
can share the same copy of t as a common subexpression. The motivation behind the requirement that the uses share the same adornment is that the magic-sets generated from the uses be over the same arguments, which permits union.

The bcf adornment pattern introduced in [MFPR90] uses the c adornment for independent conditions only. A condition on an attribute X is said to be independent if it can be expressed without reference to any free (f) attribute. Thus X > 10 is independent. X > Y is independent if Y is bound, otherwise it is dependent. The adornment algorithm and the following GMT of [MFPR90] work on the assumption that only independent conditions are pushed down, and that no conditions are deduced from the given ones. [MFPR90] also suggests that with the two-phase algorithm, it is not possible to capture and push down dependent and more general types of conditions using the bcf adornment pattern. Stronger adornment patterns are needed to push down such conditions.

In our one-phase algorithm, we generate magic-sets for a table t as we generate its adornments, before adornning the bodies of the table expression defining t. Later, when we determine the sips in the table expressions of tα, and adorn the tables referenced, we know the actual conditions on tα (since we can look up the magic-set), rather than just the adornment α. We then use these actual conditions in making a better choice on how to evaluate the table expression.

Define the simple-bcf adornment pattern to be similar to the bcf pattern of [MFPR90] (discussed in Section 4 1), except that α a adornment on an attribute now represents any type of condition on that attribute, not just an independent condition.

We now explain how having the magic-sets available while adornning a table expression for t enables the simple-bcf pattern to fulfill the three functions of adornments given earlier, even though the c adornment represents an arbitrary condition.

In the following lemma we borrow the definition of
grounding tables from [MFPR90]. Given a condition p on a derived table t, a set of tables in the FROM clause of t containing all the attributes referenced in p, is called a grounding set. In statement P2 of Example 4 1, s is the grounding table for the restriction X > 10.

Lemma 4 1. Let p1 and p2 be two restrictions that condition the same attributes of a derived table t. Then, if a set G is a grounding set for p1, G is also a grounding set for p2.

Using Lemma 4 1, we show that the one-phase algorithm with simple-bcf adornments performs all the functions we want adornments to perform.

Function 1 With the actual restrictions on a table available at the time its body is adorned, adornments are no longer needed for Function 1. As a result, the abstraction they represent is not important.

Function 2. Function 2 can be done by the simple-bcf pattern for the class of arbitrary conditions, this follows from Lemma 4 1 and the Ground Magic-sets Transformation [MFPR90]. We illustrate with an example.

Example 4 3 (Simple-bcf Adornment)

(P1) SELECT X, Y, Z FROM t(X, Y, Z)
WHERE X > 10 AND Y > 10

(P2) SELECT X, Y, Z FROM t(X, Y, Z)
WHERE X > Y

(P3) t(X, Y, Z) AS (SELECT X, Y, Z
FROM q1(X), q2(Y), s(X, Z))

Both queries P1 and P2 generate the adornment tα/f.

By Lemma 4 1, {q1, q2} is a grounding set for ccf restriction that conditions the first two arguments of t. q1 and q2 should be adorned differently for the two uses of t'α/f while s should be adorned w/bf for both uses. If we were adornning the program without constructing magic-sets and without using any information besides the ccf adornment on t we could not adorn as desired. However, using our one-phase algorithm, we get

(M1) SELECT X, Y, Z FROM t''/(X, Y, Z)
WHERE X > 10 AND Y > 10

⁰ A dag can have common subexpressions, but it does not have recursion.
We are implementing EMS in Starburst. We have written the pseudo-code, and have C code that executes the transformation in simple cases. In this section we give a sketch of our implementation.

EMS is a part of the query-rewrite phase of the Starburst optimizer. Rewrites are done by a (production) rule-based system that encodes each query transformation as a rewrite rule ([HP88]). A forward chaining engine traverses the query graph depth first (normally), applying rewrite rules. EMS is applied to graph elements representing table expressions, and it is applied to one table expression at a time. Multiple firings of the EMS rule, as the graph is traversed, cumulatively produce a transformed query.

Starburst includes a number of rewrite rules besides the magic-sets rule. The predicate pushdown rules determine what predicates get pushed from table expressions into referenced tables, and in what form. The EMS rule then places the predicates in the right place (as a magic-set).

The way in which magic-sets are applied to a table expression can depend upon the operation in the table expression. For example, magic cannot be applied to operations such as GROUP BY (the bad operations) exactly as it is applied to operations such as SELECT (the good operations).

When magic processing acts on a table expression for table t, previous processing ensures that the head t is adorned, a magic-table mt for t is available, and (for good operations) that mt is grounded and joined into the body of the table expression. Also, the sip's order within the table expression must be known.

During magic processing of t, all predicates in the table expression are pushed into each table referenced in the table expression (using the predicate pushdown rules). An adornment α for each r is determined, and a table expression for r α, with a body identical to that of the table expression for r, is created. The magic-sets m r α for r α from its use in t is formed, and if r is good, m r α is grounded and added to the table expression for r α.

Magic processing is performed for every table expression visited in a traversal of the query graph. We avoid repeatedly processing a table expression except for bad table expressions under special conditions. The following theorem holds for our EMS algorithm (assuming we first get rid of all cycles in query Q consisting entirely of bad tables).

Theorem 5.1 For any query graph Q, EMS terminates, and EMS(Q) is equivalent to Q under the evaluation strategy of Starburst.

The adornment and the magic-set transformation are combined in a one-phase algorithm (Section 4.3). Mostly, the simple-bcf adornment is used, although bad operations require special refined adornments. EMS is extensible with respect to (1) new operations in table expressions, and (2) the traversal strategy (depth-first, breadth-first, bottom-up, etc.).

6 Performance

In this section we present performance measurements that illustrate how EMS accelerates complex queries (such as decision-support queries) consisting of several query blocks. It is not uncommon for such queries to take hours (or even days) to complete. Query transformation can improve performance by several orders of magnitude.
A comprehensive performance evaluation requires a definition of a benchmark database and a set of queries for a particular workload. We focus on a complex query workload (with multiple predicates, joins, aggregations and subqueries), rather than a transaction workload, where queries are relatively simple. Although transaction benchmarks have been proposed, [A+85, TPC89], complex query workloads are still at a preliminary stage ([TOB89, O'N89]). To measure the performance effect of the magic-sets transformation, we employ a scaled up (by a factor of 10) version of the DB2 benchmark database described in [Loc86].

Magic-sets transformations have been studied in the context of recursive queries, and the usefulness of magic-sets for recursive queries is explained in [BR86, BR87]. In this section we study nonrecursive queries.

Our performance measurements were done on the IBM DB2 V2R2 relational DBMS using the DB2PM performance monitoring tool [DB88] to determine elapsed time (total time taken by system to evaluate the query) and I/O time (the time for which I/O devices are busy). We measured the performance of each query both before and after applying the magic-sets transformation. Both representations of the query went through the query compilation process, including cost optimization. Performance figures for several of the queries we measured are described below.

The DB2 benchmark database is based on an inventory tracking and stock control application. Work centers, represented by the wkc table have locations (local). Items (itm) are worked on at locations within work centers, and the table itl captures this relationship. Each item may have orders (ipt). Some physical characteristics of the database are shown in Table 1.

Predicate pushdown and set-oriented computation are the two key factors in query optimization and execution. The magic-sets transformation enables us to take advantage of both. Advantages of pushing down local predicates, such as (Job = "Sl Ploglammel") in query D1 of Example 2.1, are well-known. We concentrate on pushdown of join predicates that pass information sideways (SIPS predicates), such as (emp Dno = dep.avgsal Dno) in query D1 of Example 2.1.

Set-oriented computation is desirable as it usually leads to improved performance over an equivalent fragmented or tuple-at-a-time computation. Pushing join (or sips) predicates by correlation fragments the computation, causing the subquery to be evaluated once for each value passed down. As a result, we may lose the efficiency of sequential prefetch ([TG84]) because each computation fragment does not access enough pages to take full advantage of sequential prefetch in terms of amortizing the cost of an I/O call across a large number of pages. Inefficiency can also arise in accessing data through nonclustered indices. If computation is not fragmented, we extract the TID (tuple ID) of qualified tuples from the index, sort the results by page IDs, and then do the I/Os ([MHWC90]). Hence, each relevant data page is retrieved only once. In a fragmented computation the same page may be retrieved many times, once by each computation fragment that is interested in a tuple on the page. Further, each fragment has a certain fixed cost associated with operations such as opening and closing scans, and sort initializations (e.g., initialization of the tournament trees when tournament sorts are used). In a set-oriented computation, the fixed costs are incurred once only. With correlation the fixed costs are incurred once for each evaluation of the subquery. Query transformations that result in non-set-oriented computation can therefore degrade performance significantly, as we see in Section 6.3.

Evaluation of performance of magic-sets is based on the two factors discussed above: predicate pushdown (or sideways information passing) and set-oriented computation. The effect of predicate pushdown depends on how bindings affect the query plan of (a piece of) a query. For example, the magic-sets transformation may provide bindings for a column, so an index on that column becomes an efficient access path. The effect of set-oriented computation depends on the cardinality of the binding set (with and without duplicates). The higher the cardinality, the greater is the benefit of using set-oriented information passing. There are numerous queries where the above two factors are important. We now present some of the many queries we used in our experiments.

6.1 Experiment 1

In this experiment, selective bindings are passed to a subquery. The collection of bindings does not contain duplicates. The experiment uses the view V1 which, for each item and work center, computes the average time spent¹⁰ on that item in locations within the work center.

\[
(V1) \text{ vitetime(itm, wkcen, avgtime) AS} \\
\quad \text{ (SELECT } \text{ itm, wkcen, AVG(loctime) FROM itl GROUPBY } \text{ itm, wkcen) }
\]

Consider the query Q1. For items ordered with a quantity (qcomp) of 450, find the average time spent on that item in locations within each work center that work on the item.

\[
(Q1) \text{ SELECT DISTINCT itm, wkcen, avgtime} \\
\quad \text{ FROM } \text{ itp, itm, vitetime} \\
\quad \text{ WHERE } \text{ itp qcomp = 450 AND itp itemn = itm itemn} \\
\quad \text{ AND itp itemn = vitetime itemn}
\]

¹⁰ A location works on an item for loctime = finishtime - starttime.
The following plan to solve Q1 “Compute the view \textit{view mag time}, store it in a temporary table, and use it to compute Q1”, took about 150 minutes to execute. The plan is inefficient since the view is computed for all items even though the query needs the view on a small subset of the items (the predicate on quantity is very selective). We can avoid the redundant computation by passing into the view (through query rewrite) a set of bindings on items for which the view needs to be computed.

The bindings can be passed by either correlation or magic-sets. With correlation, the predicate (\textit{tp itemn = view itemn itemm}) is pushed into the table expression \textit{corr.itemtime}, filtering out computation of many groups. The correlated query\footnote{The view becomes a correlated table expression. Standard SQL does not allow correlated table expressions. We did the experiment using a variant of C1 whose execution cost is close, but definitely less, than the execution cost of C1.} is

\begin{verbatim}
(C1) SELECT DISTINCT itemn, wkcen, avgtlme
 FROM ttm, corr.itemtime(tp itemn, wkcen avgtlme) AS
 (SELECT itemn, wkcen, AVG(loctime) FROM ttm
 WHERE ttm itemn = ttm itemn
 GROUP BY wkcen)
 WHERE qcomp = 450 AND ttm itemn = ttm itemn
\end{verbatim}

The plan for C1 evaluates the view \textit{corr.itemtime} multiple times. During each evaluation, the index on \textit{itemn} column of the \textit{ttm} table is used, and only the relevant tuples are retrieved. The predicate on \textit{tp itemn} is such that there are no duplicates in the bindings (\textit{tp itemn}) passed into the view.

With the magic-sets transformation, the supplementary magic-set, \textit{s.mag}, is computed as a temporary (\textit{M1a}), \textit{s.mag} is used in computing a reduced view \textit{mag.itemtime} (\textit{M1b}), and the original query is rewritten using the reduced view (\textit{M1c})

\begin{verbatim}
(M1a) s.mag AS
 (SELECT DISTINCT itemn FROM ttm, ttm
 WHERE qcomp = 450 AND ttm itemn = ttm itemn)

(M1b) mag.itemtime(itemn, wkcen, avgtlme) AS
 (SELECT ttm itemn, ttm wkcen, AVG(loctime)
 FROM s.mag, ttm WHERE s.mag itemn = ttm itemn
 GROUP BY ttm itemn, ttm wkcen)

(M1c) SELECT DISTINCT s.mag itemn, wkcen, avgtlme
 FROM s.mag, mag.itemtime
 WHERE s.mag itemn = mag.itemtime itemn
\end{verbatim}

The plan to solve \textit{M1} computes the view \textit{mag.itemtime} by a nested-loop join, with \textit{s.mag} (a small table) as the outer and \textit{ttm} (a large table) as the inner, using the index on \textit{itemn} column of \textit{ttm} to access only the relevant \textit{ttm} tuples. The join is followed by grouping and aggregation.

Performance results are summarized in Table 2. For each query, we give the elapsed and I/O times. The figures are normalized with respect to a value 100 for the original query. Both correlation and magic-sets improved performance by 	extit{two orders of magnitude}, reducing the elapsed time from 2.5 hours to about 1 minute. Neither technique was significantly better than the other, since both led to very similar plans for computing the \textit{view itemtime}, which was the expensive part of query Q1. With correlation, the bindings on \textit{itemn} were directly used to access \textit{ttm} through an index. With magic-sets, a nested loop join retrieved the set of bindings from \textit{s.mag} and used them to access \textit{ttm} in exactly the same way. Correlation was marginally faster because the magic query \textit{M1} needed to store the supplementary magic-set in a temporary table. The correlated query had much lower I/O time. Amongst the reasons are (a) The variant of C1 we use in our experiment had a much smaller output, (b) temporaries need to be stored while evaluating \textit{M1}.

\subsection{6.2 Experiment 2}

This experiment examines the effect of duplicate values in the set of bindings on performance. Experiment 1 is modified by changing the predicate on \textit{tp} so that it gives us 95 items, each with 100 orders. As a result there are 100 copies of each distinct binding value (\textit{itemn}). Performance results are summarized in Table 2.

Correlation computes the view \textit{corr.itemtime} for every copy of every binding value coming from the outer query. Magic-sets do significantly better because it eliminates duplicate bindings before storing them in \textit{s.mag}. Correlation can be improved so as to eliminate duplicate view evaluations. The result of each evaluation, along with the binding value used in the evaluation, can be saved in a temporary table, and duplicate evaluations replaced by a table lookup. We believe that such a modification will make correlation competitive with magic-sets on Experiment 2.

\subsection{6.3 Experiment 3}

This experiment shows the advantage of set-oriented information passing using magic-sets. There are no duplicates in the binding set. Consider the view \textit{V3}. For each workcenter, find the average times spent on items by locations of a certain type in this workcenter. \textit{V3} is similar to \textit{V1}, except that we filter out some locations, and project out the \textit{itemn} column from the output.

\begin{verbatim}
(V3) itemavgtlme(wkcen, avgtlme) AS
 (SELECT DISTINCT wkcen, AVG(loctime) FROM ttm
\end{verbatim}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Query & Experiment 1 & & Experiment 2 & & \\
& Time & I/O & Time & I/O & \\
\hline
Original & 100 00 & 100 00 & 100 00 & 100 00 & \\
Correlated & 0 40 & 0 06 & 2 10 & 0 005 & \\
Magic & 0 46 & 0 25 & 0 28 & 0 069 & \\
\hline
\end{tabular}
\caption{Table 2 Relative Elapsed and I/O Times for Queries of Experiments 1 and 2}
\end{table}
Table 3 Relative Elapsed and I/O Times for Queries of Experiment 3

<table>
<thead>
<tr>
<th>Query</th>
<th>10 bindings</th>
<th></th>
<th>100 bindings</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>I/O</td>
<td>Time</td>
<td>I/O</td>
</tr>
<tr>
<td>Original</td>
<td>100 00</td>
<td>100 00</td>
<td>100 00</td>
<td>100 00</td>
</tr>
<tr>
<td>Correlated</td>
<td>513 00</td>
<td>453 00</td>
<td>513 00</td>
<td>452 00</td>
</tr>
<tr>
<td>Magic</td>
<td>55 00</td>
<td>46 00</td>
<td>111 00</td>
<td>62 20</td>
</tr>
</tbody>
</table>

Table 4 Relative Elapsed and I/O Times for a Variation of Experiment 3

<table>
<thead>
<tr>
<th>Query</th>
<th>Time</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>100 00</td>
<td>100 00</td>
</tr>
<tr>
<td>Correlated</td>
<td>52 50</td>
<td>22 74</td>
</tr>
<tr>
<td>Magic</td>
<td>8 60</td>
<td>5 17</td>
</tr>
</tbody>
</table>

The indexed access to all tuples of Itl that satisfy the location predicate Itl is a large table, even when limited to a few locations, and the access cost is substantial. As most of the access costs are repeated for each binding value, the cost of the query is almost linear in the cardinality of the binding set. In the corresponding magic query, Itl is accessed only once and joined with the full set of bindings. The modification to correlation suggested in Subsection 6.2 cannot improve performance of correlation on this experiment.

Experiment 3 shows the stability of the magic-sets transformation — even when it turns out not to be the optimal choice (because predicate selectivity estimates are wrong), it tends not to be much worse than the winning alternative. Since the primary goal of optimization is to avoid bad plans (and the secondary goal is to find a pretty good one), the magic-sets transformation often meets optimization goals better than correlation and decorrelation, which are considerably less stable. Unstable query transformations require the optimizer to estimate the cost of queries carefully. Due to the extremely high cost of the optimization process, the role of stable heuristics is becoming increasingly important. For this reason, the stability of magic-sets is very valuable.

Table 4 summarizes the performance results of Experiment 4, a variation on Experiment 3 with 10 bindings. The view is similar to V3, but a join of Itl with Itp and another table is needed before grouping. As a result, the grouped relation is large, and the grouping cost is significant. Magic-sets perform better than both correlation and decorrelation (due to set-oriented computation) and the original query (due to reduction in cost of grouping), and is a clear winner.

7 Conclusion

In this paper, we showed that the magic-sets transformation can be extended to handle general SQL constructs. We sketched the implementation of Extended Magic-sets as part of the rewrite component of a relational database system prototype, and presented a performance study contrasting magic-sets with correlation and decorrelation. Many significant results were abbreviated or omitted, including aspects of refined adornments, simple adornments and implementation details.

We believe that this paper demonstrates that the magic sets technique (which formerly was a tool only for Datalog and logic programming) should be considered...
a practical extension of existing rewrite optimization techniques. Magic is indeed "relevant" for relational database systems, it is a general technique (applicable to nonrecursive as well as recursive queries) for introducing predicates that filter out accesses to irrelevant rows of tables as soon as possible. Database systems have been using limited variants of this for many years.

We do not suggest that the magic-sets transformations should be employed whenever they are applicable. Rather, magic is a valuable alternative that appears to be more stable than both correlation and decorrelation, subject to trade-offs that must be evaluated by a cost optimizer [SAC+79, Loh88]. Magic may be especially valuable for queries (such as decision-support queries) involving large numbers of joins, complex nesting of query blocks, or recursion. Such queries may be infeasible unless magic-sets are applied.

A number of special optimization techniques have been proposed in the literature. Some of these can be viewed as alternatives to magic-sets that try to exploit special properties of certain queries, such as linear queries on acyclic data (e.g., Henchen-Naqvi [HN86], Counting [BMSU86]), or special operators to express a restricted (and important) class of queries such as transitive closure (e.g., The alpha operator [Agr87]). When applicable, the above techniques are sometimes better than the magic-sets transformation. However, Example 12 illustrates that there are useful queries that cannot be expressed using linear recursion. The importance of magic-sets is that it is applicable to all (extended) SQL queries and provides a general optimization framework with good, stable performance. There are also techniques that further refine the magic-sets approach by recognizing special properties of the program and optimizing the transformed program suitably.

Although we are implementing magic as an extension of the rewrite optimization component in the Starburst extendable relational database prototype, many practical questions remain. Our difficult open problem is the integration of rewrite optimization and cost optimization. Cost optimization may take time and space exponential in the number of tables joined. Transformations such as magic-sets may introduce exponentially many alternative queries, each of which requires cost optimization of a query more complex than the original. Clearly there is a structural relationship among the many query transformations, but we do not understand this problem well enough yet to reduce it to a manageable level by either algebraic techniques or by engineering heuristics.

8 Acknowledgements

The Starburst project at IBM Almaden Research Center provided a stimulating environment for this work. We particularly thank Ted Messinger for helping us in setting up the DB2 benchmark database. Bruce Lindsay, Guy Lohman, Ulf Schreier, Jeff Ullman and the referees made helpful comments on drafts of this paper. We thank Jeff Ullman and members of the NALLI group at Stanford for many insightful discussions on this subject.

References

[ACSN] P Agretti and S Cosmadakis Expressiveness of Restricted Recursive Queries In STOC 1989

[Agr87] R Agrawal, Alpha: An Extension of Relational Algebra to Express a Class of Recursive Queries. Paper Engineering 1987

[HLP84] L. Henchen and S. Naqvi. On Composing Queries in Recursive First Order Databases. JACM, 31(1) 47-80, January 1984

[SSU87] L. H. Hulchen and S. Naqvi, On Compiling Queries in Recursive First Order Databases. JACM, 31(1) 47-80, January 1984

